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Abstract – The paper examines the main issues during the 

realization of OSEK real time operating system for ARM7 
cores. Analysis and synthesis on the implementation of 
consisting in the operating system modules is provided. The 
main particularities related to hardware specific platform are 
reviewed. 
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I. INTRODUCTION 

 
The railways’ electronic diagnostic systems are 

characterized by complexity in terms of their performance 
opportunities. On the other hand there are many restrictions 
that they must comply: 

- time critical – possibility for real time operation; 
- possibility of building component  based software  

architecture; 
- effective management of system resources; 
- possibility for re-use of separate software  

components. 
This task is hard for implementation, by using the 

opportunities of linear programming. It is necessary to 
build a strategy for creation of easy configurable software. 

So identified requirements, can be adequately met 
through the use of real-time operating system (RTOS). 

The RTOS approach is quite popular in the automotive 
industry over the past 10 years. The OSEK/VDX standard 
is a result of automotive manufactures’ aspiration to create 
a standardized software infrastructure for transport 
electronic systems. The main considerations arise with the 
fact of continued increase in electronic systems complexity, 
which control is possible through a well-defined modules 
and links between them. 

Program functional blocks are separated in software 
components - the smallest abstract logical units (fig. A). 
Component is an independent software object, realizing 
determinate functionality. It has several inputs and outputs 
for data exchange, called interface. 

The  components, whose parameters – such as activation 
event, cyclic execution period - are grouped in the so-called 
application tasks. The OSRT realizing its manipulations 
over  these application tasks. This is the way to achieve: 

- consecutive utilization of available system  
resources, which leads to higher performance, without a 
necessity of additional hardware; 

- precise tasks execution planning, implemented by  
the system services of the RTOS. 

- possibility for jointly pseudo-parallel execution of  
slow, time consuming tasks, with fast time-critical tasks; 

- possibility for fast system’s reaction on event,  
realized by a different set of services for interrupt handling; 

- self-diagnostic and control of tasks’ execution  
time; 

- independence of the software in terms of used  
hardware. 

- There is an OSEK requirement  - the operation  
system to be static. The user creates a configuration – 
number of application tasks, alarms for tasks’ activation 
and so on. Based on this configuration, the source code of 
the operating system is generated. 

 
 

Figure 1. Functional features separation into tasks. 
 

The chosen microcontroller for current implementation 
is LPC2106 by NXP Philips. It is based on ARM 7 core. 
The basic characteristics are: 

- possible work as 16 bit word as well as 32 bit; 
- 128 KB flash memory; 
- 60MHz core frequency. 

 
II. IMPLEMENTATION 

 
The current implementation aims at splitting the source 

code in two parts – hardware independent and hardware 
dependant. This separation is appropriate in order to enable 
the code generation for the operating system, and to enable 
its portability to different microcontroller families. 
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A. Dispatcher implementation 
  

The dispatcher is responsible for process of application 
tasks’ service. It is activated at definite moments – 
scheduling points: 

- system time tick expiration; 
- activation of an alarm; 
- releasing of occupied resource, needed by higher  

priority task; 
- event occurrence; 
- explicit call to dispatcher from application  

tasks. 
The OSEK/VDX standard defines three possibilities for 

scheduling policy, in accordance with tasks’ states[1]. In 
the current implementation the mixed type is used – pre-
emptive dispatching together with co-operative 
dispatching. The advantages of that choice are with respect 
to the specificity of implemented railway diagnostic 
system. There are time critical processes in this system – 
measurement of transport vehicle parameters. It is required 
that they are done with an precise sampling rate, and stable 
cyclic period. On the other hand it is not allowed to  have a 
preemption on these measurement tasks. 

Processes that have asynchronous nature, and relatively 
long processing time are placed in pre-emptive, low 
priority application task container. This could be the the 
diagnostic system’s communication with a personal 
computer, used for transfer of measurement data. This 
approach allows to balance the load of the system, and 
respect to the time-critical requirements of the 
measurement.  

An important point within the implementation of the 
operating system is the optimization of used resource – 
memory. The basic non-pre-emptive tasks[1] are started 
and executed in determinate, preliminarily known points of 
their program – beginning and end of the executable. It is 
not necessary to save their context temporary, during a 
state different than “running”. This is the reason not to 
have a separate task’s stack in the memory. Indeed they can 
use a shared memory, which is used by the task during its 
execution – “running” state. 

The dispatcher groups the application tasks in 
accordance with their common symptom – their state. In 
the current implementation, three groups are realized, as 
linked lists: 

- queue of ready for execution tasks – this is a 
tasks’s list, arranged in descending order of their 
priority. The dispatcher points to the task with 
higher priority at list’s beginning. The first task in 
the list will be activated, when the next scheduling 
point occurs. 

- Queue of tasks waiting for occurrence of an event.  
It is not necessary to arrange the tasks in some kind of 

order. After the event has come, the tasks associated with it 
are transferred by the dispatcher into the queue of ready for 
execution tasks. A particular case of such event is 
expiration of alarm. 

- Queue of tasks, which need an access to a  
system resource when executed. Because of the 
asynchronous nature of the system, it is necessary to have 
procedure for resource management. This is the way to 
guarantee that in particular moment, only one task could 

occupy a resource. The tasks which required a resource 
occupation during their execution are grouped in a queue in 
descending order of their priority. When a resource is 
released, the highest priority task is transferred to the queue 
of ready for execution tasks. After it has completed its job, 
it releases the resource, and goes in state “suspended”. This 
is the way, to grant resource access to the following next in 
terms of priority task, associated with this resource. There 
are two essential moments in the scheduling points, which 
need to be realized. The first is task context saving, in order 
to provide a possibility to it, to resume from the exact 
point, it was interrupted. The second one – activation of 
chosen for execution task by loading its context in the 
special function registers of the microcontroller. 
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Figure 2.  Tasks dispatching 
 

These manipulations require a special access to the 
microcontroller’s registers, available only in special mode - 
privileged mode. The used microcontroller has six modes. 
They are associated with definite events – system interrupts 
or exceptions. For the current implementation, the 
following are used: 
Supervisor – with extended access to special function 
registers of the microcontroller – used for loading and 
saving tasks’ context. 
IRQ – this mode is entered, when an interrupt from the 
system timer occurs. This interrupt is used to form the 
basic time tick in the operating system. An access to 
necessary system registers is granted to the dispatcher. 
User – this is the mode, which the tasks are executed, with 
restricted access to system registers. 
 The supervisor mode is used in case of explicit request 
for rescheduling from application task to the dispatcher. 
When a task is executed, the microcontroller is in user 
mode. It has no opportunity for manipulation over system 
registers, when it is necessary to reschedule the current 
executed task. When the task makes a request for 
rescheduling, the microcontroller should be in supervisor 
mode, realized as a software interrupt – function 
TerminateTask. The interrupt service routine activates the 
dispatcher, and the mode is supervisor because of the 
interrupt context. In this case, the dispatcher restores the 
context of next task for execution and starts it by the 
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function RestoreTaskContext. From microcontroller point 
of view, the activation of the task looks like return from 
interrupt. The difference is that the program counter is 
loaded with the first instruction of task for activation, and 
the stack pointer is set to the individual task’s stack 
memory space. 

  
Figure 3. Transitions between modes of processor 

 

 Figure 4. Tasks switching with TerminateTask. 
 

A similar approach is used for rescheduling, when 
executed task is pre-emptive, and basic time tick expires – 
every 1ms. In that case, instead of software interrupt an 
interrupt from the time system is used. After the context of 
interrupted task is saved, then a processing of system 
events is performed – alarm management, ready task queue 
processing. As a final action within the interrupt service 
routine, the highest priority task is activated by loading its 
context into special function registers. The situation is -  
system interrupt suspends current task execution, 
manipulates the return address and stack pointer with 
context of highest priority task ready for execution. The 
returning from interrupt activates the new loaded task. 
 
B. Realization of application tasks 
  

The application tasks also called containers [1], are used 
for grouping of functional components, characterized with 
equal execution parameters – execution time cycle, priority 
and etc. The task possesses two sections in the 
microcontroller memory: 

- Descriptor – used for task’s state transitions  
management by the dispatcher – saving of task’s context, 
when it is not in “running” state. Most of the fields in 
descriptor’s structure are volatile, and this is the reason to 
be kept in the RAM memory. 

‐ Runnable – this is the component’s executable  

code, kept in the ROM memory, pointed by pTaskCode 
member of the descriptor. 

Figure 5. Task’s descriptor 
 

During execution of operating system, application tasks 
are changing their state[1] – field TaskType. The type of 
the application task[1] is kept in the descriptor member 
TaskType. The private stack space for the task is pointed 
by the pxTopOfStack. During the development phase, it is 
hard to estimate precisely the necessary volume of task’s 
stack. From optimization point of view, allocation of 
needless large stack space is not a good idea. For this 
reason, the task’s descriptor has a field – pxEndOfStack, 
which points to the physical end of the task’s stack. During 
the initialization, this memory area is written with a pattern 
value, and stack’s boarder with other pattern.  The 
operating system has a chance to control the consumed 
stack. In case of overwriting the boarder pattern, RTOS 
suspends its normal execution, and marks the problem. 
This is a token for the user, that allocated memory space is 
underestimated for correct execution of application task.  
 
C. Alarm realization 
  

Alarms are events that occur after a predefined period of 
time [1]. Their activation could lead to task activation, 
alarm callback execution, or rising of a RTOS event. In the 
implemented operating system, there is a descriptor similar 
to this of application task, and used for alarm management 
from the OS.  

The alarm is connected to a counter, which value its 
monitors. On the other hand, the counter increments its 
value on every system time tick. When a real time system 
is developed, based on implemented OS, there should be a 
strict plan for exact time for alarm start, and associated 
tasks’ execution time. This is the way to guarantee 
distributed execution of application tasks in the time. 
Another constraint is to prevent overlapping between tasks 
execution. This effect will lead to out of synchronization 
for the time-critical, high priority tasks. For this reason 
there is a member in the alarm’s descriptor used for starting 
time offset.  
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D. System interrupts 
 

The system interrupts could be two types in the current 
OS – category 1 and category 2[1]. Category 1 are 
processed without operating system involvement. Because 
of this fact they have the lowest latent time. Within the 
context of this interrupt category, it is not permitted to use 
operating system services. Category 2 interrupts can be 
considered as highest priority tasks, activated with 
associated interrupt occurrence. When the interrupt occurs, 
the dispatcher is activated in T1 (fig. F). After the 
interrupted task context is saved, the dispatcher activates 
unconditionally the subprogram for interrupt service 
routine(ISR)  – T2. At the end of ISR – T3, the dispatcher 
resumes the interrupted task – T4. The conclusion that the 
category 2 interrupt processing is similar to processing of 
system event is reasonable. The difference is in the 
obligatory resuming of interrupted task, after the ISR has 
completed. During the system event processing, it is 
possible to start a task different than the one executed 
before the occurrence of the event it-self. 
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Figure 6. Category 2 interrupt processing. 

 
E. System Generation 

 
It is required by the OSEK standard, to have automated 

operating system generation based on user configuration. 
The implemented OS is fully static in its part for system 
services realization. The separate tasks, alarms and events 
can be presented as system tables, accessed by constant 
index. Therefore, their number and association do not 
affect the structure of the operating system. These features 
allow construction of a program for editing the 
configuration, and generating the code for the OS. After 
that as a next step the task containers are filled with the 
system interfaces of the design system components.  

There are two basic points, which are dependant to 
hardware platform and have to be taken in account during 
the implementation of OS generation: 

‐ Hardware initialization – frequency, port  
configuration, setting system tick interrupt. The possible 
solution is generating of empty functions filled by the user 
in accordance with his necessity; choice of standard 
preliminary defined configurations for supported platforms.  

‐ Explicit request for rescheduling from task  
context, described in “Task dispatching”. For 
microcontrollers, which have a supervisor mode (ARM, 
Futjitsu, NEC, Renesas), this can be realized by software 
interrupt or delayed interrupt. For the other – without 
modes with restricted access to special function registers 
(MSP430, PIC). The system is generated with stubbed 
macro for rescheduling. For the first group it is connected 
to software interrupt or delayed interrupt. The respective 

ISR are activating only the dispatcher. For the second 
group, the macro is connected directly the dispatcher. This 
approach unifies the generation for most of the 
microcontroller. 
 

III. CONCLUSION 
 

The usage of real time operating system provides the 
user with following advantages: 

‐ possibility for optimal organization of the  
software; 

‐ effective utilization of available hardware  
resources; 

‐ planning of tasks’ execution – effective system  
performance; 

‐ fast and easy tuning of the system during the 
development phase; 

‐ possibility for re-use of software components on 
different hardware platforms. 

Used microcontroller in the current implementation – 
LPC2106 is a suitable for real time systems. The 
availability of different modes, allows isolation of access to 
critical system resources from user application tasks. Only 
dedicated static sections – dispatcher and system services  - 
have access to them, which make the system more resistant 
to eventual problems in the user tasks. 
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