
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

79

Feature 3

Feature 2

Feature 1 Component A Component B

Operating
System

Component C Component D

Component E Component F

Sy
st

em
 S

er
vi

ce
s

Task 1

Task 2

Implementation of OSEK/VDX Based OS for Usage
in Railway Diagnostic System

Kristian Dilov Dilov and Emil Nikolov Dimitrov

Abstract – The paper examines the main issues during the

realization of OSEK real time operating system for ARM7
cores. Analysis and synthesis on the implementation of
consisting in the operating system modules is provided. The
main particularities related to hardware specific platform are
reviewed.

Keywords – OSEK, dispatching, tasks, event and alarms.

I. INTRODUCTION

The railways’ electronic diagnostic systems are

characterized by complexity in terms of their performance
opportunities. On the other hand there are many restrictions
that they must comply:

- time critical – possibility for real time operation;
- possibility of building component based software

architecture;
- effective management of system resources;
- possibility for re-use of separate software

components.
This task is hard for implementation, by using the

opportunities of linear programming. It is necessary to
build a strategy for creation of easy configurable software.

So identified requirements, can be adequately met
through the use of real-time operating system (RTOS).

The RTOS approach is quite popular in the automotive
industry over the past 10 years. The OSEK/VDX standard
is a result of automotive manufactures’ aspiration to create
a standardized software infrastructure for transport
electronic systems. The main considerations arise with the
fact of continued increase in electronic systems complexity,
which control is possible through a well-defined modules
and links between them.

Program functional blocks are separated in software
components - the smallest abstract logical units (fig. A).
Component is an independent software object, realizing
determinate functionality. It has several inputs and outputs
for data exchange, called interface.

The components, whose parameters – such as activation
event, cyclic execution period - are grouped in the so-called
application tasks. The OSRT realizing its manipulations
over these application tasks. This is the way to achieve:

- consecutive utilization of available system
resources, which leads to higher performance, without a
necessity of additional hardware;

- precise tasks execution planning, implemented by
the system services of the RTOS.

- possibility for jointly pseudo-parallel execution of
slow, time consuming tasks, with fast time-critical tasks;

- possibility for fast system’s reaction on event,
realized by a different set of services for interrupt handling;

- self-diagnostic and control of tasks’ execution
time;

- independence of the software in terms of used
hardware.

- There is an OSEK requirement - the operation
system to be static. The user creates a configuration –
number of application tasks, alarms for tasks’ activation
and so on. Based on this configuration, the source code of
the operating system is generated.

Figure 1. Functional features separation into tasks.

The chosen microcontroller for current implementation
is LPC2106 by NXP Philips. It is based on ARM 7 core.
The basic characteristics are:

- possible work as 16 bit word as well as 32 bit;
- 128 KB flash memory;
- 60MHz core frequency.

II. IMPLEMENTATION

The current implementation aims at splitting the source

code in two parts – hardware independent and hardware
dependant. This separation is appropriate in order to enable
the code generation for the operating system, and to enable
its portability to different microcontroller families.

K. Dilov is with the Department of Electronics and Electronics
Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: kdilov@kdilov.com

E. Dimitrov is with the Department of Electronics and
Electronics Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: edim@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2009

80

A. Dispatcher implementation

The dispatcher is responsible for process of application
tasks’ service. It is activated at definite moments –
scheduling points:

- system time tick expiration;
- activation of an alarm;
- releasing of occupied resource, needed by higher

priority task;
- event occurrence;
- explicit call to dispatcher from application

tasks.
The OSEK/VDX standard defines three possibilities for

scheduling policy, in accordance with tasks’ states[1]. In
the current implementation the mixed type is used – pre-
emptive dispatching together with co-operative
dispatching. The advantages of that choice are with respect
to the specificity of implemented railway diagnostic
system. There are time critical processes in this system –
measurement of transport vehicle parameters. It is required
that they are done with an precise sampling rate, and stable
cyclic period. On the other hand it is not allowed to have a
preemption on these measurement tasks.

Processes that have asynchronous nature, and relatively
long processing time are placed in pre-emptive, low
priority application task container. This could be the the
diagnostic system’s communication with a personal
computer, used for transfer of measurement data. This
approach allows to balance the load of the system, and
respect to the time-critical requirements of the
measurement.

An important point within the implementation of the
operating system is the optimization of used resource –
memory. The basic non-pre-emptive tasks[1] are started
and executed in determinate, preliminarily known points of
their program – beginning and end of the executable. It is
not necessary to save their context temporary, during a
state different than “running”. This is the reason not to
have a separate task’s stack in the memory. Indeed they can
use a shared memory, which is used by the task during its
execution – “running” state.

The dispatcher groups the application tasks in
accordance with their common symptom – their state. In
the current implementation, three groups are realized, as
linked lists:

- queue of ready for execution tasks – this is a
tasks’s list, arranged in descending order of their
priority. The dispatcher points to the task with
higher priority at list’s beginning. The first task in
the list will be activated, when the next scheduling
point occurs.

- Queue of tasks waiting for occurrence of an event.
It is not necessary to arrange the tasks in some kind of

order. After the event has come, the tasks associated with it
are transferred by the dispatcher into the queue of ready for
execution tasks. A particular case of such event is
expiration of alarm.

- Queue of tasks, which need an access to a
system resource when executed. Because of the
asynchronous nature of the system, it is necessary to have
procedure for resource management. This is the way to
guarantee that in particular moment, only one task could

occupy a resource. The tasks which required a resource
occupation during their execution are grouped in a queue in
descending order of their priority. When a resource is
released, the highest priority task is transferred to the queue
of ready for execution tasks. After it has completed its job,
it releases the resource, and goes in state “suspended”. This
is the way, to grant resource access to the following next in
terms of priority task, associated with this resource. There
are two essential moments in the scheduling points, which
need to be realized. The first is task context saving, in order
to provide a possibility to it, to resume from the exact
point, it was interrupted. The second one – activation of
chosen for execution task by loading its context in the
special function registers of the microcontroller.

S
ch

ed
ul

in
g

po
in

ts

Figure 2. Tasks dispatching

These manipulations require a special access to the
microcontroller’s registers, available only in special mode -
privileged mode. The used microcontroller has six modes.
They are associated with definite events – system interrupts
or exceptions. For the current implementation, the
following are used:
Supervisor – with extended access to special function
registers of the microcontroller – used for loading and
saving tasks’ context.
IRQ – this mode is entered, when an interrupt from the
system timer occurs. This interrupt is used to form the
basic time tick in the operating system. An access to
necessary system registers is granted to the dispatcher.
User – this is the mode, which the tasks are executed, with
restricted access to system registers.
 The supervisor mode is used in case of explicit request
for rescheduling from application task to the dispatcher.
When a task is executed, the microcontroller is in user
mode. It has no opportunity for manipulation over system
registers, when it is necessary to reschedule the current
executed task. When the task makes a request for
rescheduling, the microcontroller should be in supervisor
mode, realized as a software interrupt – function
TerminateTask. The interrupt service routine activates the
dispatcher, and the mode is supervisor because of the
interrupt context. In this case, the dispatcher restores the
context of next task for execution and starts it by the

ANNUAL JOURNAL OF ELECTRONICS, 2009

81

function RestoreTaskContext. From microcontroller point
of view, the activation of the task looks like return from
interrupt. The difference is that the program counter is
loaded with the first instruction of task for activation, and
the stack pointer is set to the individual task’s stack
memory space.

Figure 3. Transitions between modes of processor

 Figure 4. Tasks switching with TerminateTask.

A similar approach is used for rescheduling, when
executed task is pre-emptive, and basic time tick expires –
every 1ms. In that case, instead of software interrupt an
interrupt from the time system is used. After the context of
interrupted task is saved, then a processing of system
events is performed – alarm management, ready task queue
processing. As a final action within the interrupt service
routine, the highest priority task is activated by loading its
context into special function registers. The situation is -
system interrupt suspends current task execution,
manipulates the return address and stack pointer with
context of highest priority task ready for execution. The
returning from interrupt activates the new loaded task.

B. Realization of application tasks

The application tasks also called containers [1], are used
for grouping of functional components, characterized with
equal execution parameters – execution time cycle, priority
and etc. The task possesses two sections in the
microcontroller memory:

- Descriptor – used for task’s state transitions
management by the dispatcher – saving of task’s context,
when it is not in “running” state. Most of the fields in
descriptor’s structure are volatile, and this is the reason to
be kept in the RAM memory.

‐ Runnable – this is the component’s executable

code, kept in the ROM memory, pointed by pTaskCode
member of the descriptor.

Figure 5. Task’s descriptor

During execution of operating system, application tasks
are changing their state[1] – field TaskType. The type of
the application task[1] is kept in the descriptor member
TaskType. The private stack space for the task is pointed
by the pxTopOfStack. During the development phase, it is
hard to estimate precisely the necessary volume of task’s
stack. From optimization point of view, allocation of
needless large stack space is not a good idea. For this
reason, the task’s descriptor has a field – pxEndOfStack,
which points to the physical end of the task’s stack. During
the initialization, this memory area is written with a pattern
value, and stack’s boarder with other pattern. The
operating system has a chance to control the consumed
stack. In case of overwriting the boarder pattern, RTOS
suspends its normal execution, and marks the problem.
This is a token for the user, that allocated memory space is
underestimated for correct execution of application task.

C. Alarm realization

Alarms are events that occur after a predefined period of
time [1]. Their activation could lead to task activation,
alarm callback execution, or rising of a RTOS event. In the
implemented operating system, there is a descriptor similar
to this of application task, and used for alarm management
from the OS.

The alarm is connected to a counter, which value its
monitors. On the other hand, the counter increments its
value on every system time tick. When a real time system
is developed, based on implemented OS, there should be a
strict plan for exact time for alarm start, and associated
tasks’ execution time. This is the way to guarantee
distributed execution of application tasks in the time.
Another constraint is to prevent overlapping between tasks
execution. This effect will lead to out of synchronization
for the time-critical, high priority tasks. For this reason
there is a member in the alarm’s descriptor used for starting
time offset.

Supervisor

User

IRQ

Terminate Task System
Timer Interrupt

Restore Task Context

User
Mode

Supervisor
Mode

User
Mode

Dispetcher

Restore
Task X
Context Task X

Termination
of

Task Y

Activation
of

Dispatcher

Activation
of
Task X

Save
Task Y
Context

Time

Task Y

tskTaskControlBlock
pxTopOfStack : Long *
uxPriority : Byte
pxStack : Long *
pTaskCode : pTASK_CODE *
NextTCB : tskTaskControlBlock *
pxEndOfStack : Long *
TaskType : tTaskType
TaskStatus : teExtTaskState

ITASK

tTaskType
eBasic_Pre_Emptive : Integer = 101
eBasic_Non_Pre_Emptive : Integer = 111
eXtended_Pre_Emptive : Integer = 202
eXtended_Non_Pre_Emptive : Integer = 222

<<uses>>

teExtTaskState
eSuspended : Integer = 0
eRunning : Integer = 1
eReady : Integer = 2
eWaiting : Integer = 3
eInvalidState : Integer = 4

<<uses>>

tskTCB
tskTCB : tskTaskControlBlock

<<tskTaskControlBlock>>
<<realize>>

<<uses>>

ANNUAL JOURNAL OF ELECTRONICS, 2009

82

D. System interrupts

The system interrupts could be two types in the current
OS – category 1 and category 2[1]. Category 1 are
processed without operating system involvement. Because
of this fact they have the lowest latent time. Within the
context of this interrupt category, it is not permitted to use
operating system services. Category 2 interrupts can be
considered as highest priority tasks, activated with
associated interrupt occurrence. When the interrupt occurs,
the dispatcher is activated in T1 (fig. F). After the
interrupted task context is saved, the dispatcher activates
unconditionally the subprogram for interrupt service
routine(ISR) – T2. At the end of ISR – T3, the dispatcher
resumes the interrupted task – T4. The conclusion that the
category 2 interrupt processing is similar to processing of
system event is reasonable. The difference is in the
obligatory resuming of interrupted task, after the ISR has
completed. During the system event processing, it is
possible to start a task different than the one executed
before the occurrence of the event it-self.

Диспечер

Задача Х

Диспечер

Категория 2
ISR

Задача Х

T1 T2 T3 T4

Настъпване на
прекъването

Figure 6. Category 2 interrupt processing.

E. System Generation

It is required by the OSEK standard, to have automated

operating system generation based on user configuration.
The implemented OS is fully static in its part for system
services realization. The separate tasks, alarms and events
can be presented as system tables, accessed by constant
index. Therefore, their number and association do not
affect the structure of the operating system. These features
allow construction of a program for editing the
configuration, and generating the code for the OS. After
that as a next step the task containers are filled with the
system interfaces of the design system components.

There are two basic points, which are dependant to
hardware platform and have to be taken in account during
the implementation of OS generation:

‐ Hardware initialization – frequency, port
configuration, setting system tick interrupt. The possible
solution is generating of empty functions filled by the user
in accordance with his necessity; choice of standard
preliminary defined configurations for supported platforms.

‐ Explicit request for rescheduling from task
context, described in “Task dispatching”. For
microcontrollers, which have a supervisor mode (ARM,
Futjitsu, NEC, Renesas), this can be realized by software
interrupt or delayed interrupt. For the other – without
modes with restricted access to special function registers
(MSP430, PIC). The system is generated with stubbed
macro for rescheduling. For the first group it is connected
to software interrupt or delayed interrupt. The respective

ISR are activating only the dispatcher. For the second
group, the macro is connected directly the dispatcher. This
approach unifies the generation for most of the
microcontroller.

III. CONCLUSION

The usage of real time operating system provides the
user with following advantages:

‐ possibility for optimal organization of the
software;

‐ effective utilization of available hardware
resources;

‐ planning of tasks’ execution – effective system
performance;

‐ fast and easy tuning of the system during the
development phase;

‐ possibility for re-use of software components on
different hardware platforms.

Used microcontroller in the current implementation –
LPC2106 is a suitable for real time systems. The
availability of different modes, allows isolation of access to
critical system resources from user application tasks. Only
dedicated static sections – dispatcher and system services -
have access to them, which make the system more resistant
to eventual problems in the user tasks.

REFERENCES

[1] K. Dilov, E. Dimitrov. Study of OSEK OS possibilities for
usage in railway electronic diagnostic systems. In the same
edition
[2] М. Луканчевски. Системно програмиране за едночипови
микрокомпютри
[3] OSEK/VDX - Operating System Specification 2.2.22
[4] J.K Stankovic, J. K. Ramamritham. The design of the Spring
kernel. Real time systems symposium San Jose 1987
[5] Shao B., R. Wang, EMBEDDED REAL-TIME SYSTEMS TO
BE APPLIED IN CONTROL SUBSYSTEMS FOR
ACCELERATORS - Tsinghua University, Beijing
[6] http://portal.osek-vdx.org/
[7] http://www.autosar.org/

